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Platelet-derived exosomes (PLT-Exos) are the main subtype of extracellular vesicles
secreted by platelets, which carry proteins, nucleotides, lipids, and other substances
to acceptor cells, playing an important role in intercellular communication. PLT-Exos
increase with platelet activation and are involved in the process of atherothrombosis by
delivering cargo to acceptor cells. Atherosclerotic plaque rupture, causing thrombosis
and arterial occlusion, is the basic pathological change leading to cardiovascular events.
PLT-Exos from different donors have different functions. PLT-Exos secreted by healthy
volunteer or mice can inhibit platelet activation and inflammation of endothelial cells, thus
exerting an antithrombotic effect, while PLT-Exos derived from some patients induce
endothelial apoptosis and an inflammatory response to promote atherothrombosis.
Furthermore, increased PLT-Exos reflect platelet activation and their cargoes also
are derived from platelets; therefore, PLT-Exos can also be used as a biomarkers
for the diagnosis and prognosis of cardiovascular disease. This article reviews the
characteristics of PLT-Exos and discusses their role in cell-to-cell communication
and atherothrombosis.
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INTRODUCTION

The fundamental mechanism of atherothrombosis comprises plaque disruption and subsequent
thrombus formation. Atherothrombotic events, such as myocardial infarction are major causes of
cardiovascular death (1). Atherosclerosis starts with endothelial dysfunction, followed by neointima
formation, lipid accumulation, foam cell formation, and plaque rupture (2–5). After plaque rupture,
prothrombotic substances are exposed to the blood, followed by platelets and coagulation cascade
activation, resulting in thrombosis (6–8). In this process, platelets are activated by inflammatory
cells, collagen, von Willebrand factor (VWF), tissue factors, and thrombin (9, 10). Platelet activation
causes more platelet-derived exosomes (PLT-Exos) to be secreted, which play important roles in
atherothrombosis.

Platelet-derived exosomes are a type of extracellular vesicles (EVs), comprising a tiny vesicles
with a lipid bilayer released by platelets. More than 75% of EVs, including exosomes, in the
blood are derived from platelets (11). Exosomes (30–150 nm in diameter) are derived from the
nucleosome and are released by the fusion of multivesicular bodies (MVBs) with the plasma
membrane. After release from the donor, exosomes can transport various substances, including
mRNAs, microRNAs (miRNAs), proteins, lipids, molecules, ceramide, and phosphatidylserine, to
acceptor cells. On the one hand, exosomes play a role in cell-to-cell communication (12–14)in many
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pathological processes, such as cardiovascular disease (15), body
immunity (16), nerve repair (17), aging (18), and cancer (19, 20).
On the other hand, exosomal cargoes reflect the status of the
parent cells and are important disease diagnostic markers.

Platelets, originating from megakaryocytes in the bone
marrow, are an important part of the blood, and are involved in
various pathological processes, such as hemostasis, thrombosis,
and the immune response (21). During atherothrombosis,
platelet activation is accompanied by massive release of PLT-
Exos, which in intercellular communication by transporting
cargoes such as microRNAs and proteins. Studies have shown
that the functions of PLT-Exos from different donors vary.
Exosomes secreted by healthy volunteer or mice can inhibit
platelet aggregation and endothelial cell inflammation, while
PLT-Exos derived from some patients promote endothelial cell
apoptosis and the neutrophil-mediated inflammatory response.
Based on their important regulatory role, PLT-Exos are expected
to be a new method or target for the prevention and treatment of
atherothrombosis (22–24). This article reviews the mechanisms
involved in the regulation of atherothrombosis by PLT-Exos.

CHARACTERISTICS OF
PLATELET-DERIVED EXOSOMES

The surface of exosomes comprises different types of surface
proteins, such as quad transmembrane proteins, integrins, and
immunomodulatory proteins (25). Exosomes can be recognized
by most cells and transport proteins, RNAs, cytokines, lipids
and other cargoes to acceptor cells to exert multiple regulatory
roles (26). Therefore, PLT-Exos usually carry intra platelet
substances for information transmission to regulate their
target cells. In addition, platelets contain three main types of
granules: α granules, dense granules, and lysosomes. Among
them, α granules are the most abundant organelles, containing
immunoinflammatory regulators, cell adhesive molecules (e.g.,
fibrinogen, VWF, and multimerin 1), and coagulation factors
(e.g., factor V, IX, and XIII) (21). Platelet dense granules are
released into the extracellular space directly or through the
open canalicular system (OCS) (27) after platelet activation
(28). Similar to α molecules, PLT-Exos are also rich in
proinflammatory and immunochemokines, such as C-X-C motif
chemokine ligand (CXCL)3, C-C motif chemokine ligand 5
(CCL5), CXCL7, platelet factor 4 (PF4), glycoprotein Ib platelet
subunit alpha (GP1B), complements C3 and C5, and the platelet
activation marker selectin P (CD62p) (29). In addition, platelets
can also selectively release RNA into exosomes, prompting
exosomes to exert specific functions after entering the acceptor
cells (30).

The functions of PLT-Exos are also closely related to causes of
platelet activation. Platelet activation caused by different factors
results in the release different PLT-Exos in terms of number, size,
and, content (31, 32). Platelets produce vesicles with different
properties under mechanical forces, such as high shear forces, or
in the presence of biochemical reagents, such as thrombin (33,
34). For example, activation of platelets by ADP, thrombin, or
collagen results in noticeable differences in terms of the proteins

in exosomes (35). Therefore, platelets activated in different
diseases can release specific exosomes that can be used for both
disease diagnosis and prognostic evaluation, and are directly
involved in disease progression.

INTERCELLULAR COMMUNICATION OF
PLATELET-DERIVED EXOSOMES

The Biogenesis of Platelet-Derived
Exosomes
The biogenesis of PLT-Exos is complex. Firstly, various proteins,
such as exosomal membrane proteins, lipid-anchored outer
membrane proteins, and peripheral surface proteins (36), can
enter cells via endocytosis of the plasma membrane and form
early sorting endosomes. Secondly, early sorting endosomes can
fuse with nucleosomes containing other intracellular substances
to transform them into late sorting endosomes, which can
then transport cargoes with the assistance of the endoplasmic
reticulum and Golgi apparatus (12, 36, 37). During the process
of late sorting endosome formation, some proteins and lipids
are packaged to form intraluminal vesicles (ILVs). Next, ILVs
germinate inward (38) to form multivesicular bodies (MVBs).
Some MVBs combined with lysosomes or autophagosomes are
decomposed, and other MVBs fuse with the plasma membrane
under the action of linker proteins to undergo exocytosis.
Furthermore, there are many small vesicles in the lumen of
MVBs. The MVB lumen contents, including the intact vesicles,
are released into the extracellular space. These small vesicles
carrying various substances are called exosomes, which reach
acceptor cells via body fluids, recognize receptors, and enter cells
(39, 40) (Figure 1).

The biogenesis of exosomes is regulated by a variety of
mechanisms, and both the endosomal sorting complex required
for transport (ESCRT) pathway and non-ESCRT pathway
play important roles in the formation of MVBs from ILVs.
ESCRT is mainly composed of four different protein complexes
(ESCRT-0, −I, −II, −III) on the MVB membrane, which
encapsulates cargoes through microdomains to form small
membrane vesicles and further form ILVs (37, 39). ESCRT-0,
which gathers in the limiting membrane of MVBs, can recognize
ubiquitinated proteins (cargo) and associate with clathrin.
Subsequently, ESCRT-I and ESCRT-II together form stable hetero
oligomers with ESCRT-0, aggregating the ubiquitinated cargo
in the endosomal membrane. The total complex then recruits
and combines with ESCRT-III (23). ESCRT-III promotes the
production of complexes (41), ultimately enclosing ILVs into
endosomes through budding and dividing. Meanwhile, there
is also an ESCRT-independent mechanism for the release of
exosomes that still form ILVs, even when all four key subunits
of the ESCRT-complex are silenced (42). For example, the
inhibition of neutral sphingomyelinase can reduce the release
of MVBs and promote the release of exosomes via the ESCRT
independent pathway (43). In addition, Baietti et al. (44)
reported that the syndecan–syntenin–ALG-2-interacting protein
X (ALIX) axis is an important regulator of membrane trafficking

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 April 2022 | Volume 9 | Article 886132

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-886132 April 11, 2022 Time: 14:37 # 3

Wei et al. PLT-Exos and Atherothrombosis

FIGURE 1 | Generation of platelet-derived exosomes. Extracellular proteins, lipids, and metabolites enter the cell through endocytosis. At the luminal side of the cell,
the plasma membrane bulge from the outside to the inside to form early sorting endosomes (ESEs). Next, ESEs can fuse with other nucleosomes and transport
substances through the Golgi apparatus, gradually forming late sorting endosomes (LSEs). Then, LSEs form intraluminal vesicles (ILVs) through plasma membrane
invagination. Finally, the cargoes are further modified via the endosomal sorting complex required for transport (ESCRT) pathway or non-ESCRT pathway to
eventually form multivesicular bodies (MVBs). MVBs fuse with the plasma membrane and secrete exosomes into the extracellular space via exocytosis.

and heparan sulfate-assisted signaling, which can regulate the
occurrence of exosomes.

Fate of Platelet-Derived Exosomes in
Recipient Cells
Platelet-Derived Exosomes play a role in cell-to-cell
communication by entering acceptor cells to release a variety
of substances carried from the mother cells. Exosomes enter
recipient cells in four main ways, including receptor-dependent
endocytosis, phagocytosis, macropinocytosis, and membrane
fusion (45, 46). In the process of entering the cell, exosomes bind
to cell surface receptors and move in a slow drifting mode on the
plasma membrane, and then enter the cell through endocytosis.
Then, exosomes diffuse in the local microenvironment of the
cytoplasm in a confined mode or move along the cytoskeleton
in rapid directed mode (47, 48). Some exosomes undergoing
plasma membrane fusion to release their cargo directly into the
acceptor cells, and others enter the cells to form MVBs together
with ILVs. One part of MVBs are dissolved by lysosomes, and the
other part release their exosomal cargoes into the recipient cells
(37) (Figure 2).

PLATELET-DERIVED EXOSOMES
REGULATE ATHEROTHROMBOSIS

Platelets in Atherothrombosis
Platelets are involved in plaque formation and thrombosis,
through platelet adhesion, activation, and aggregation. Platelet

adhesion mainly occurs after endothelial cell injury. Platelet
glycoprotein GPIa (GPIa) and GPIIa on the platelet membrane
bind to collagen through VWF, so that platelets adhere to the
injury site (34, 49) and become an important component of
the plaques. Platelet activation is reflected in three aspects.
First, after platelet adhesion, collagen binds to VWF, triggering
calcium-mediated intraplatelet signals, after which thromboxane
A2 and adenosine diphosphate bind to other soluble agonists
(such as α-thrombin and epinephrine) to promote platelet
activation. Second, inflammatory cells, such as leukocytes (50),
neutrophils (51), B cells, and T cells also activate platelets (10).
Third, after plaque rupture, with activation of the coagulation
cascade, thrombin binds to the G protein-linked protease-
activated receptor of platelets to activate platelets. After platelet
activation, α-and δ-granules are released into the blood, and
the adhesive glycoproteins and hemostatic molecules carried
by them promote platelet aggregation (34). Platelet aggregation
results from platelet activation leading to enhanced binding of
platelet surface GPIIb/IIIa receptors to other adhesion proteins,
particularly fibrinogen (FG), which exacerbates thrombin-
mediated conversion of fibrinogen to fibrin, thereby promoting
thrombosis (6).

Platelets are fundamental in atherothrombosis. Many
exosomes are secreted after platelet activation to participate
in this pathological process. Proteomics showed that integrin
subunit alpha 2b (ITGA2B) and integrin subunit beat 3 (ITGB3)
levels were enhanced in PLT-Exos from patients with burns
(52). ITGA2B binds to FG to promote platelet activation
and blood coagulation, and ITGB3 binding to VWF exerts a
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FIGURE 2 | Fate of platelet-derived exosomes in recipient cells. After being recognized by recipient cell surface receptors, exosomes enter cells through via
phagocytosis, macropinocytosis, membrane fusion, or receptor dependent endocytosis. On the one hand, exosomes that enter via membrane fusion release their
cargoes into the target cells directly. On the other hand, the exosomes that enter the cell via the other methods are internalized to form ESEs, and then combine with
ILVs to form MVBs. Some of the exosomal substances are released from MVBs, and the rest would be degraded by lysosomes.

rapid hemostatic effect. A study illustrated that PLT-Exos are
both a marker of disease status and also contain potentially
pathogenic proteins. Srikanthan et al. found that PLT-Exos could
reduce platelet activity and adhesion to collagen, reduce CD36
expression, and inhibit platelet aggregation in an FeCl3-induced
carotid artery thrombosis model in mice (53). Therefore,
potentially, PLT-Exos can be both pathogenic, because of the
inclusion of procoagulant proteins, and resistant to platelet
activation and aggregation, which might be related to the source
of PLT-Exos and their specific cargo proteins.

Endothelial Cells in Atherothrombosis
The role of endothelial cells in atherothrombosis is divided
into two aspects. On the one hand, as the initial factors of
plaque formation, endothelial injury and barrier dysfunction, are
the basis of pathological changes, such as platelet adhesion,
lipid deposition, and foam cell and inflammatory cell
aggregation. On the other hand, the healthy endothelium
expresses mediators to prevent platelet activation, including
nitric oxide (NO), prostacyclin (PGI2), and ectonucleoside
triphosphate diphosphohydrolase-1 (E-NTPDase1), and
those that inhibit coagulation, such as thrombomodulin, the
heparin−antithrombin III system, and tissue factor pathway
inhibition (34, 54). Besides, endothelium-derived prostacyclin
and platelet-derived thromboxane A2 are considered to be
mutually antagonistic components of the dynamic thrombotic
balance at the vessel-blood interface, which might regulate
atherothrombosis (54, 55). Endothelial cell dysfunction is mainly
caused to the activation of endothelial cells, especially type II
activation with increased expression of interleukin 1 (IL-1),
tumor necrosis factor alpha (TNF-α, and vascular cell adhesion

molecule 1 (VCAM-1), which leads to chronic inflammation of
the endothelium and accelerates atherothrombosis (56).

Endothelial injury promotes the activation of platelets and
secretion of PLT-Exos. PLT-Exos can regulate endothelial cell
function by transporting miRNAs. In 2013, Gldlöf et al. found
that miR-320b released from activated platelets into endothelial
cells inhibited intercellular adhesion molecule 1 (ICAM-1)
expression in patients with myocardial infarction; however,
the study did not determine whether it entered cells through
exosomes (57). Yan et al. demonstrated that thrombin-activated
platelets can inhibit ICAM-1 expression in endothelial cells
through transporting miRNA-223 in exosomes, and found that
miR-223 might inhibit endothelial inflammation by regulating
nuclear factor kappa B (NF-κB) and mitogen-activated protein
kinase (MAPK) pathways (58). To further explore the role of
PLT-Exos in endothelial injury, Wang et al. demonstrated that
PLT-Exos inhibited the expression of the target gene ADAM10
(encoding A disintegrin and metalloproteinase domain 10),
regulated the NF-κB pathway, downregulated IL-1β, IL-6, TNF-
α, triglycerides, and total cholesterol, and inhibited endothelial
cell inflammation and lipid deposition by delivering miR-25-
3p into endothelial cells (59). Therefore, PLT-Exos can protect
endothelial cells via miRNA regulation.

Platelet-Derived Exosomes can also synergistically regulate
endothelial cells through multiple pathways. For example, PLT-
Exos can not only enhance ITGA2B and ITGB3 protein levels
(52), but also can activate the Yes1 associated transcriptional
regulator (YAP) protein (60). These proteins can all activate the
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein
kinase B (AKT) signaling pathway, which weakens the
inflammation of endothelial cells by inducing autophagy.
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Moreover, in the same disease, PLT-Exos can also act through
multiple pathways to complete complex regulatory mechanisms.
In patients with sepsis, the Janiszewski et al. (61) found that
PLT-Exos can produce reactive oxygen and induce endothelial
cell apoptosis through nicotinamide adenine dinucleotide
phosphate (NADPH). Subsequently, their team further found
that exosomes secreted by platelets exposed to NO and bacteria
induced caspase-3 activation and apoptosis in endothelial cells
by producing superoxide, NO, and peroxynitrite, which resulted
in endothelial dysfunction (62). That study also revealed that
PLT-Exos can induce endothelial dysfunction in addition to
inhibiting endothelial cell inflammation, probably because the
PLT-Exos were derived from patients. Similarly, in diabetic
retinopathy, PLT-Exo secretion is significantly increased and
CXCL10 is upregulated, which activate the toll like receptor
4 (TLR4) signaling pathway and induce retinal endothelial
injury (63). In brief, PLT-Exos can protect endothelial cells by
inhibiting endothelial cell inflammation, but can also lead to
vascular dysfunction by inducing endothelial cell apoptosis,
mainly depending on the source of PLT-Exos and their content.

Inflammatory Cells in Atherothrombosis
In atherothrombosis, inflammatory cells are both major
participants in plaque formation and can promote thrombosis by
activating platelets and the coagulation cascade. On the one hand,
plaque formation is a chronic inflammatory process (64), and
macrophages and T cells produce a large number of mediators,
including proinflammatory cytokines, co-stimulators of immune
activation, eicosenoids, reactive oxygen species, and nitrogen
species (6, 9). Furthermore, inflammation causes platelet
activation and promotes plaque progression. Activated platelets
not only secrete PF4, regulated upon activation, normally
t-expressed, and presumably secreted (RANTES), macrophage
inflammatory protein 1-alpha (MIP-1α), and epithelial-derived
neutrophil-activating protein 78 (ENA-78) (65), which promote
monocyte aggregation, but also expresses CD40L to regulate
the formation of platelet-leukocyte complexes and recruit
regulatory T cells (66). In addition, platelet-secreted alpha
granules store abundant chemokines, such as CXCL4, which
can promote the recruitment and activation of endothelial cells
and leukocytes (67). On the other hand, thrombus formation is
promoted by inflammatory cells. Leukocytes mediate thrombin
activation through the production of tissue factor (TF) and
granzyme (68–70), and promote thrombus formation through
damage-associated molecular patterns (DAMPs) that promote
coagulation system activation (65, 71, 72), platelet activation, and
aggregation (73–75).

Inflammatory cells can activate platelets to secrete exosomes
and promote thrombosis. A previous study focused on the
interaction between neutrophils and PLT-Exos. On the one
hand, neutrophils promote thrombosis through procoagulant
factors and soluble mediators that induce platelet activation and
aggregation in neutrophil EVs. On the other hand, neutrophils
promote thrombosis through neutrophil extracellular traps
(NETs) that create a scaffold for platelets and other blood
cells to attach to Blanch-Ruiz et al. (51). Kuravi et al. found
that PLT-Exos can promote neutrophil adhesion to endothelial

cells and enhance inflammation through CD62P and CXC-
chemokines, which resembles the actions of platelet-derived
microvesicles (76). Moreover, excessive activation of immune
thrombi during septic shock cause thrombotic inflammation,
and PLT-Exos activate the AKT/mechanistic target of rapamycin
(mTOR) autophagy pathway to promote the formation of NETs
through high-mobility group protein 1 (HMGB1) and/or miR-
15b-5p and miR-378a-3p (77). In summary, PLT-Exos promote
neutrophil-mediated thrombosis; however, the limited number of
previous studies has resulted in a lack direct evidence for a role of
PLT-Exos in atherothrombosis.

APPLICATION OF PLATELET-DERIVED
EXOSOMES

Potential in the Treatment
The role of PLT-Exos in atherothrombosis is expected to lead
to their application in the treatment of coronary heart disease.
Previous studies have demonstrated the role of exosomes in
coronary heart disease (78, 79) and found that exosomes can be
detected in atherosclerotic plaques (80). Unlike other exosomes,
PLT-Exos are secreted in large amounts during platelet activation
and can regulate thrombosis through multiple pathways,
involving platelets, endothelial cells, and inflammation, which
have wide potential for therapeutic intervention (Table 1). PLT-
Exos reduced endothelial cell inflammation in Apoe -/- mice
(59), inhibited the entry of oxidized low-density lipoprotein and
cholesterol into macrophages, restrained foam cell formation
(53), and then slowed the process of atherosclerosis. In acute
thrombosis, in addition to directly inhibiting platelet activation
and adhesion (53), PLT-Exos could transfer into smooth muscle
cells and reduce the expression of platelet-derived growth
factor receptor-beta (PDGFRβ) to inhibit smooth muscle cell
proliferation and regulate vascular smooth muscle cell injury and
repair (81). The above studies provide an experimental basis for
the application of PLT-Exos in disease treatment.

Exosomes can be used not only for disease prevention
and control, but also as carriers to transport cargo. Exosomes
have unique advantages in that they are not easily cleared by
immunization and are well tolerated after exosome injection
(25). For example, intravenous injection of PLT-Exos inhibited
atherosclerosis progression in mice (59). Exosomes act as cargo
carriers to deliver miRNAs, siRNAs, and drugs to receptor cells
and play a role in regulating target cells to treat diseases (82). For
instance, enhanced levels of miR-223 in PLT-Exos inhibited the
inflammation involving monocytes (83). In addition, to solve the
problem of stent restenosis, Guan et al. immobilized PLT-Exos on
the stent surface using electrostatic recheck, which could improve
endothelial function, inhibit the macrophage pro-inflammation
(M1 phenotype), and promote their conversion to the anti-
inflammatory (M2) phenotype (84). This demonstrated the
application prospects of PLT-Exo in cardiovascular biomaterials.
Another study found that aspirin inhibited the increase in the
levels of chemokines and high-mobility group box 1 (HMGB1)
in PLT Exos, but the total amount of PLT-Exos was not
changed. That study indicated that antiplatelet drugs do not
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inhibit exosome secretion, and we expect to further explore the
synergistic effect of drugs and exosomes in therapy in a future
study (85). In short, PLT-Exos can be applied to the treatment of
diseases from multiple perspectives, such as directly in treatment,
as cargo carriers, in combination with biomaterials or other
drugs; however, research in this area is still in its infancy.

Emerging Diagnostic Markers
Exosomes are widespread in most biological fluids (86), such
as blood, saliva, and urine, and are secreted by cells in
physiological or pathological conditions. Exosomal cargoes and
characteristics are closely related to disease status, and increased
attention has been paid to their role in tumor diagnosis
and evaluation (87–89). Thus, research has identified them as
potential biomarkers for the study of cardiovascular diseases
(90, 91). Moreover, clinical diagnosis and treatment would
be facilitated through the detection of exosomes in biological
fluids, which would reduce the need for invasive operations
and computed tomography radiation. For example, Tan M et al.
found that miR-223, miR-339, and miR-21, which are associated
with platelet activation, were significantly elevated in PLT-
Exos before arterial thrombosis, and thus might represent new

TABLE 1 | The role of PLT-Exo in atherothrombosis.

Article(references) Research target Functional changes

Qin et al. (52) Coagulation Coagulation in burn
patients (+)

Srikanthan et al. (53) Thrombosis Platelet aggregation (−)
CD36 in platelet (−)
Occlusive thrombosis (−)

Li et al. (58) Thrombosis-inflammation
response

ICAM-1 (−)
NF-κB pathways (−)
MAPK pathways (−)

Yao et al. (59) Endothelial cell inflammation IL-1β, IL-6, and TNF-α (−)
Atherosclerosis (−)

Janiszewski et al. (61) Endothelial cell apoptosis NADPH in sepsis (+)
Apoptosis rates in sepsis
(+)

Gambim et al. (62) Endothelial cell apoptosis Caspase-3 activation in
sepsis (+)
Apoptosis in sepsis (+)

Zhang et al. (63) Endothelial injury CXCL10 in diabetic rats (+)
TLR4 pathways in diabetic
rats (+)

Kuravi et al. (76) Neutrophil-endothelial cell
interactions

Adhesion (+)
Inflammatory responses (+)

Jiao et al. (77) Neutrophil HMGB1 in septic shock (+)
Akt/mTOR pathway in
septic shock (+)
NETs in septic shock (+)

Poon et al. (83) Monocytes IL-6 and NLRP3 during
CPB (−)
inflammatory responses
during CPB (−)

Tan et al. (81) Vascular smooth muscle cells PDGFRβ (−)

NADPH, nicotinamide adenine dinucleotide phosphate; CPB, Cardiac surgery with
cardiopulmonary bypass; NETs, neutrophil extracellular traps; PDGFRβ, growth
factor receptor-beta; (+), increase; (−), decrease.

predictive biomarkers (81). There are still relatively few studies
about PLT-Exo, mainly because of the difficulty in extracting
PLT-Exos and controlling the experimental conditions. Plasma
exosomes are mainly derived from platelets and can be used to
replace PLT-Exos to a certain extent, bringing convenience to
clinical applications.

CONCLUSIONS AND PERSPECTIVE

Atherothrombosis is the pathological basis of acute
cardiovascular events, and platelet activation is an important
condition for thrombosis (92). Therefore, how exosomes
released by activated platelets function in thrombosis has become
the focus of research attention. Exosomes carry a variety of
information from platelets into acceptor cells and function
in intercellular communication, which is expected to lead to
new therapeutic approaches. Therefore, we discussed the role
played by PLT-Exos in atherothrombosis and their mechanisms.
By specifically delivering different miRNAs and proteins,
PLT-Exos can inhibit platelet activation and aggregation, and
reduce endothelial cell inflammatory injury. However, different
sources of PLT-Exos act differently, and PLT-Exos from some
patients would promote endothelial apoptosis and neutrophil-
mediated inflammatory response. Hence, flexible applications
and modifications of PLT-Exos have great potential to prevent
and treat atherothrombosis (93).

Platelet-derived exosomes can be obtained from different
sources, leading to significant differences in their cargoes and
functions. Exosomes secreted by platelets in disease states often
contain pathogenic factors that can be used as biomarkers for
disease diagnosis, but do not necessarily act on receptor cells.
For example, PLT-Exos are rich in proinflammatory factors and
chemokines, reflecting the activation of platelets, while PLT-
Exos may play an antiphlogistic and antithrombotic role in
receptor cells. In addition, because PLT-Exos are rich in a variety
of cargoes, they can play different roles by carrying different
regulators. In previous studies, PLT-Exos secreted in disease
states often showed high levels of pathogenic factors and can
enter target cells to promote disease progression, while exosomes
obtained from healthy volunteer or mice can inhibit platelet
activation and endothelial inflammation. Of course, these results
are only a summary of the current studies on atherothrombosis
and are not absolute. For instance, in patients undergoing
cardiac surgery with cardiopulmonary bypass (CPB), increased
miR-223 in PLT-Exos can downregulate the expression of IL6
and NLRP3 (encoding NLR family pyrin domain containing
3) in monocytes to inhibit the inflammation induced by CPB
(84). Thus, the functions of PLT-Exos depend mainly on their
source and cargoes.

Although the mechanisms of PLT-Exos in multiple
pathological processes, such as platelet activation and endothelial
inflammation injury, have been reported, there are still many
problems that need further study because of the complex
mechanisms of atherothrombosis and the variety of PLT-Exo
cargoes. First, thrombosis is mainly caused by platelet activation
and the coagulation cascade (94); however, the mechanism by

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 April 2022 | Volume 9 | Article 886132

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-886132 April 11, 2022 Time: 14:37 # 7

Wei et al. PLT-Exos and Atherothrombosis

which PLT-Exos regulate platelet activation is unclear, and there
is also a lack of studies on the role of the coagulation system.
Second, previous studies have affirmed the therapeutic effect of
PLT-Exos by intervening in endothelial cells using PLT-Exos
in healthy volunteers; however, there is a lack of intervention
experiments with PLT-Exos in patients, which makes it difficult
to explain the regulatory mechanism of PLT-Exos in disease.
Third, experimentally, PLT Exos are obtained by activating
platelets using different protocols, which caused differences
in exosomal cargoes and thus introduced experimental errors.
Recent research has focused on the function of exosomes and
the role of their mediated miRNAs and proteins, which are still
some distance away from clinical application. On the one hand,
we should develop specifications for obtaining PLT-Exos, study
the functions of PLT-Exos, then perform genomics analysis to
validate miRNAs and proteins that play a major role, and finally
apply PLT-Exos in clinical treatment. On the other hand, we can
modify PLT-Exos and use them as carriers to deliver specific
drugs or cytokines into receptor cells to exert their functions (95).

Encouragingly, previous studies demonstrated the key role
of PLT-Exos in atherothrombosis and revealed part of the
mechanism, laying the foundation for next step of research.

As exosome research progresses, we look forward to the future
application of PLT-Exos as diagnostic markers and intervention
mediators in the clinical treatment of cardiovascular diseases,
ultimately bringing benefits to patients.
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